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LEGENDRE SEQUENCES
( 1 )

Neal Zierler(
Z )

The Fourier transform A of a sequence a ={a(O), a(1), ". of complex

numbers of period p > 0 is defined to be (3)

1p- 2ni

A(n) a a(k) Pkn n=0,1,... where =e - -

k=O

and the autocorrelation function of a is by definition

*(n) = a(k) a(k+n , n 0 ....

k=O

A and + obviously have period p also and it is well known and easy to see

that + and JA j2 are Fourier transforms of each other. It follows easily that a

necessary and sufficient condition for either of + and IA I to be flat (that is, to

assume a constant value except for values of the argument which are multiples

of p) is that the other be flat. Thus, knowing that a sequence has a flat auto-

correlation function is equivalent to possessing certain information concerning

its Fourier transform; namely, that its absolute value is flat. In certain

applications involving sequences with flat autocorrelation (see Lerner [ 1]),

one wishes to have a more detailed knowledge of the corresponding Fourier

( 1)The research in this document was supported jointly by the Army, Navy,

and Air Force under contract with the Massachusetts Institute of Technology.

(Z)Staff.Member, Lincoln Laboratory, Massachusetts Institute of Technology.

(3) Cf. Loomis [ 4], especially § 34B, p. 137; a is to be regarded as a

function on the additive group of residue classes modulo p.
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transform sequences. The purpose of this note is to exhibit a family of sequences

with flat autocorrelation which essentially coincide with their Fourier transforms.

The sequences in question also satisfy the often encountered practical requirement

that they take on only two or three values.

Let p be an odd prime. If there exists m for a given n such that

m 2 n(mod p), n is said to be a quadratic residue mod p. The Legendre

sequences a = ap (cf. Landau [ 2, Def. 18, p,. 37] ) of period p are defined as

follows:

a( if n is a quadratic residue mod p
a(n)

-I otherwise,

for n JO (rod p); for the moment we regard a(O) as an arbitrary complex number.

Theorem.

Sa(O) + X p a(n) if n#O (mod p),

A(n) a

a(0) if n O (mod p)

,pif ps1 (mod 4),

where Xp

i'rP Fp M (rood 4).

The proof depends on two elementary properties of the Legendre sequence:

a(r) = 0, [ 2, Satz 79, p. 37],

rul

ii) if neither n nor m is a multiple of p, a(nm) = a(n)a(m), [ 2, Satz 81, p. 38];

and on the following celebrated theorem of Gauss:
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a(r) P r X p, 12, Satz 212, p. 155].

r=1

First, A(O) • a(r) = a(O) by i).
A- r=0

Now suppose ntO (mod p); then if r O (mod p),

a(r) = a(r). 1 = a(r). a(n 2 ) = a(r). (a(n)) 2 = a(rn) a(n) by ii).

Hence A(n) = a(r) P rn = a(O) + a(r) rn - a(O) + a(n) a(rn) rn

r=0 r.- r=l

Since p is prime andboth of the functions a(k) ar Pk of k have p as period,

a(rn) prn is simply a rearrangement of a(r) rr and the assertion

r=l r=l

follows from Gauss' s theorem.

If p 3 (mod 4), IA(n) 12 = a(O) + a(n) i%p1 2 is independent of n$O (mod p)

if and only if a(O) is real,, Similarly, if p-I (mod 4), JA(n)I? = ja(O) + a(n)p I
is flat if and only if a(O) is purely imaginary. This yields the following results.

Corollary I. The Legendre sequence ap with pv-l (mod 4) has flat autocorrelation

if and only if ap (0) is purely imaginary.

Corollary 2. The Legendre sequence ap with pU3 (mod 4) has flat autocorrelation

if and only if a p(0) is real.

Corollary 3. If a is a Legendre sequence and a(0) = 0 then a has flat auto-

correlation.

Remark. The corollaries may be obtained without difficulty from some combin-

atorial results of Perron [ 3]. Cf. also the work of Kelly[ 5] for some

interesting related results. A large class of sequences with flat autocorrelation

has been examined by the writer in [ 6].
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